Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 5789, 2024 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461344

RESUMO

The production of surface compounds coated with active substances has gained significant attention in recent years. This study investigated the physical, mechanical, antioxidant, and antimicrobial properties of a composite made of starch and zinc oxide nanoparticles (ZnO NPs) containing various concentrations of Ferula gummosa essential oil (0.5%, 1%, and 1.5%). The addition of ZnO NPs improved the thickness, mechanical and microbial properties, and reduced the water vapor permeability of the starch active film. The addition of F. gummosa essential oil to the starch nanocomposite decreased the water vapor permeability from 6.25 to 5.63 g mm-2 d-1 kPa-1, but this decrease was significant only at the concentration of 1.5% of essential oils (p < 0.05). Adding 1.5% of F. gummosa essential oil to starch nanocomposite led to a decrease in Tensile Strength value, while an increase in Elongation at Break values was observed. The results of the antimicrobial activity of the nanocomposite revealed that the pure starch film did not show any lack of growth zone. The addition of ZnO NPs to the starch matrix resulted in antimicrobial activity on both studied bacteria (Staphylococcus aureus and Escherichia coli). The highest antimicrobial activity was observed in the starch/ZnO NPs film containing 1.5% essential oil with an inhibition zone of 340 mm2 on S. aureus. Antioxidant activity increased significantly with increasing concentration of F. gummosa essential oil (P < 0.05). The film containing 1.5% essential oil had the highest (50.5%) antioxidant activity. Coating also improved the chemical characteristics of fish fillet. In conclusion, the starch nanocomposite containing ZnO NPs and F. gummosa essential oil has the potential to be used in the aquatic packaging industry.


Assuntos
Anti-Infecciosos , Ferula , Nanopartículas , Óleos Voláteis , Óxido de Zinco , Animais , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Antioxidantes/farmacologia , Antioxidantes/química , Staphylococcus aureus , Vapor , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Amido/química , Escherichia coli , Nanopartículas/química
2.
3 Biotech ; 14(1): 20, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38144392

RESUMO

This study outlines the synthesis of biogenic copper oxide nanoparticles (CuONPs) using an extract derived from Cassia fistula Linn (Cf) leaves through a green synthesis approach. Characterization of the synthesized CfBio-CuONPs was carried out using UV- VIS, FTIR, DLS, XRD, and TEM studies. The CfBio-CuONPs exhibited a prominent peak at 272 nm in UV-VIS spectroscopy, and XRD measurements confirmed their crystalline nature. The FTIR spectrum of CfBio-CuONPs revealed the presence of functional groups such as O-H and aromatic groups. TEM analysis confirmed that the CfBio-CuONPs were predominantly spherical with diameters ranging from 15 to 25 nm. Subsequently, the antibacterial potential of CfBio-CuONPs was evaluated against four pathogenic bacteria, including Escherichia coli, Pseudomonas aeruginosa, Staphylococcus epidermidis, and Bacillus subtilis. Among these, B. subtilis exhibited the highest zone of inhibition (26.93 ± 2.01 mm), followed by E. coli (24.25 ± 1.04 mm), P. aeruginosa (23.98 ± 0.97 mm), and S. epidermidis (22.97 ± 1.20 mm). CfBio-CuONPs demonstrated maximum antioxidant activity (78 ± 1.54%) at a dose-dependent concentration of 2000 µg/ml. Furthermore, in vitro toxicity assessment using the toxtrak test indicated that CfBio-CuONPs exhibited a significantly stronger toxic effect value/PI against E. coli (93.52%) compared to P. aeruginosa (92.65%), B. subtilis (91.25%), and S. epidermidis (82.89%). These results underscore the notable toxicity of CfBio-CuONPs against E. coli, surpassing that against other bacteria and conventional antibiotics. This study highlights the potential utility of CfBio-CuONPs for eradicating pathogenic microorganisms and suggests potential implications for ecotoxicology. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03869-5.

3.
Sci Rep ; 13(1): 22721, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-38123628

RESUMO

Rosa canina L. (Rosaceae), commonly known as the rose hip, is originated from Europe, Africa, and Asia with a long history in medicinal applications. This study aimed to analyze the morphological traits, fatty acids profile, and content of phenolic compounds, anthocyanins, vitamin C, total carotenoid, total phenol, total flavonoid, and antioxidant activity of the fruits of eleven Iranian R. canina ecotypes (RCEs). The highest coefficient of variation was obtained in 1000 seed weight (46.57%). The seed oil varied from 8.08 ± 0.17% to 16.91 ± 0.35%. Linoleic (35.41 ± 0.78% to 49.59 ± 0.96%) and eicosanoic (17.67 ± 0.06% to 25.36 ± 0.54%) acids were the predominant fatty acids in the studied samples. The anthocyanin content in the fruits was ranged from 0.98 ± 0.03 to 4.41 ± 0.04 mg cyanidin 3-glucoside/100 g of dry weight (mg C3G/100 g DW). The high content of vitamin C (103.51 ± 1.24-419.70 ± 3.12 mg/100 g DW), total carotenoid (111.22 ± 0.78-206.98 ± 1.25 mg ß-carotene equivalents per g of dry weight (mg ß-CARE/g DW)), total phenol (52.87 ± 0.82-104.52 ± 0.23 mg GAE/g DW), and total flavonoid (14.20 ± 0.12-25.18 ± 0.47 mg RE/g DW) were observed in the studied samples. Catechin (20.42 ± 0.47-19.22 ± 0.13 µg/g DW) was the major phenolic compound. The high antioxidant activity in the fruits of the plant was recorded in the studied RCEs (IC50 = 12.54 ± 0.18-26.33 ± 0.13 µg/ml). A significant correlation between some phytochemical compounds (dependent variable) and morphological features (independent variable) was found. Based on our findings, the fruit of the studied ecotypes can be used for future breeding programs and drug development.


Assuntos
Antioxidantes , Rosa , Antioxidantes/química , Rosa/química , Antocianinas , Ácidos Graxos , Irã (Geográfico) , Ecótipo , Extratos Vegetais/química , Ácido Ascórbico , Flavonoides/química , Fenóis/análise , Carotenoides/química , Sementes/química , Óleos de Plantas
4.
Chemosphere ; 233: 920-935, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31340420

RESUMO

The current study aimed to investigate the impacts of different concentrations of GO/PANI nanocomposites (25, 50 and 100 mg L-1), in comparison with GO and PANI, on seed germination behaviors, morpho-physiological and biochemical traits in intact (mucilaginous) and demucilaged seeds, and young seedlings of the medicinal plant Salvia mirzayanii. Upon exposure to GO, seed germination was delayed and reduced, and growth attributes (root and shoot length, shoot fresh weight, and total chlorophyll content) declined, all of which could be attributed to the reductions in water uptake and oxidative stress particularly in demucilaged seeds. A hormetic dose-dependent response was observed for the growth traits in both intact and demucilaged seedlings upon exposure to GO/PANI concentrations, i.e. low-concentration stimulation and high-concentration repression. Elevated levels of H2O2 in shoot tissue of the seedlings exposed to GO and high concentration of GO/PANI, in comparison with those exposed to low levels of GO/PANI and control, were linked with the activities of the antioxidant enzymes SOD, CAT, POD, and total phenolics. Overall, the results showed high toxicity of GO on germination and early growth of S. mirzayani that was more evident in demucilaged seedlings, whereas GO/PANI stimulated germination, and the effects on seedling growth were stimulatory or inhibitory depending on the application dose and presence of mucilage. Furthermore, the capacity of GO/PANI nanocomposites to improve germination and cause a regular porosity pattern in roots accompanied by improved water uptake and early establishment of S. mirzayanii propose potential implications of GO/PANI nanocomposites for seeds/plants in drought-prone ecosystems.


Assuntos
Compostos de Anilina/toxicidade , Antioxidantes/farmacologia , Germinação/efeitos dos fármacos , Grafite/toxicidade , Salvia/metabolismo , Plântula/crescimento & desenvolvimento , Sementes/efeitos dos fármacos , Catalase/metabolismo , Clorofila , Peróxido de Hidrogênio/farmacologia , Nanocompostos , Estresse Oxidativo/efeitos dos fármacos , Mucilagem Vegetal/metabolismo , Superóxido Dismutase/metabolismo , Água
5.
J Hazard Mater ; 324(Pt B): 306-320, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-27810325

RESUMO

In this study, seeds of Hyoscyamus niger were exposed to different concentrations (50-800µgmL-1) of single-walled carbon nanotubes (SWCNTs) under different levels of drought stress (0.5-1.5MPa) for 14days. Germinated seeds were subsequently allowed to grow in the same culture media for 7 more days to test the further response of the seedlings in terms of biochemical changes to the employed treatments. Seeds subjected to drought showed reduction in germination percentage, vigor and lengths of roots and shoots. However, inclusion of SWCNTs at the two lowest concentrations significantly alleviated the drought stress (up to moderate levels only)-induced reduction in germination and growth attributes. This happened due to increased water uptake, up-regulation of mechanisms involved in starch hydrolysis, and reduction in oxidative injury indices including H2O2, malondialdehyde contents and electrolyte leakage. The improved plant performance under PEG-induced drought stress was a consequence of changes in the expression of various antioxidant enzymes including SOD, POD, CAT, and APX, and also biosynthesis of proteins, phenolics, and specific metabolites such as proline. Results demonstrate that treatment by low concentrations of SWCNTs can induce tolerance in seedlings against low to moderate levels of drought through enhancing water uptake and activating plant defense system.


Assuntos
Secas , Hyoscyamus/efeitos dos fármacos , Nanotubos de Carbono , Estresse Fisiológico/efeitos dos fármacos , Catalase/metabolismo , Germinação/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Hyoscyamus/crescimento & desenvolvimento , Hyoscyamus/metabolismo , Malondialdeído/metabolismo , Peroxidases/metabolismo , Fenóis/metabolismo , Proteínas de Plantas/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Polietilenoglicóis/toxicidade , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA